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Abstract—Vector quantization (VQ) is a general data 

compression technique that has a scalable implementation 

complexity and potentially a high compression ratio. In this 

paper, a novel implementation of VQ using stochastic circuits is 

proposed and its performance is evaluated. The stochastic and 

binary designs are compared for the same compression quality 

and the circuits are synthesized for an industrial 28-nm cell 

library. The effects of varying the sequence length of the 

stochastic design are studied with respect to the performance 

metric of throughput per area (TPA). When a shortened 512-bit 

encoding sequence is used to obtain a lower quality compression, 

the TPA is about 2.60 times that of the binary implementation 

with the same quality as that of the stochastic implementation 

measured by the L1 norm error (i.e., the first-order error). Thus, 

the stochastic implementation outperforms the conventional 

binary design in terms of TPA for a relatively low compression 

quality. By exploiting the progressive precision feature of a 

stochastic circuit, a readily scalable processing quality can be 

attained by simply halting the computation after different 

numbers of clock cycles.    

Keywords—stochastic computing; vector quantization; 

sequence length; cost efficiency 

I. INTRODUCTION 

In some application areas, stochastic computation has been 

shown to have advantages with respect to important measures 

of circuit performance [1, 2]. These advantages include 

potentially simpler arithmetic hardware and inherent tolerance 

of transient signal errors. Because accuracy is closely related 

to the stochastic sequence length, applications for which some 

accuracy can be safely sacrificed, such as multimedia 

information displayed to humans, should be considered for 

implementation in stochastic circuits. Some image processing 

algorithms using stochastic methods have already been shown 

to match their binary counterparts in terms of hardware cost 

and speed while providing a similar experience to humans [3].  

The use of combinational logic as stochastic elements can 

be traced back to the work of Gaines [1]. Several common 

arithmetic blocks, such as adders, multipliers, dividers and 

integrators, were proposed for both bipolar and unipolar 

stochastic representations. An arithmetic synthesis method 

based on Bernstein polynomials was investigated in [4]. 

Bernstein polynomials were found to be efficiently built with 

stochastic logic. An arbitrary polynomial can be expressed 

using Bernstein polynomials after proper scaling operations, 

thus any polynomial can be implemented stochastically. In [5], 

sequential stochastic computational elements were built using 

finite state machines (FSMs). Various arithmetic functions 

were built using state transition diagrams such as stochastic 

exponentiation, a stochastic tanh function, and a stochastic 

linear gain function [6]. These stochastic implementations 

were shown to be efficient compared with previous stochastic 

computing elements implemented with combinational logic.  

Vector quantization based compression algorithms are 

useful in that the amount of stored and transmitted data can be 

reduced with a readily adjusted trade-off between compression 

ratio and implementation size. These features are important in 

multimedia processing and communications, such as for voice 

and image compression. VQ is a lossy data compression 

method, and the loss in the original information must be kept 

as low as possible. In VQ, the information loss can be reduced 

by simply using a larger suitably-designed codebook. The 

resulting extra search time can be minimized by using parallel 

computational elements [7].  

    In this paper, we explore the feasibility of using stochastic 

circuits to implement VQ. Typically, a longer sequence offers 

greater representational accuracy, but with a longer 

computation time. In a stochastic design, therefore, shorter 

sequences are used to provide faster computation but with less 

accurate results. Both the stochastic and binary designs are 

synthesized to measure important performance characteristics. 

II. VECTOR QUANTIZATION 

A. Background 

Vector quantization (VQ) is a lossy digital compression 

technique. First the source data is partitioned into equal-length 

vectors [7]. Each vector is then replaced with the index of the 

closest matching codevector that is contained in a given 

codebook. This encoding process is shown in Fig. 1(a). Note 

that each input vector is more compactly represented using the 

index of the closest codevector. The indexes are then replaced 

with the corresponding codevectors during decompression, as 

shown in the decoding process in Fig. 1(b).  
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Fig. 1. The block diagram for the (a) encoding and (b) decoding in VQ. 
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B. Codebook Generation and the Encoding Process 

In 1980’s, Linde, Buzo, and Gray (LBG) proposed a VQ 

codebook generation algorithm [7]. Although other efficient 

codebook generation approaches have been developed, we 

selected the LBG algorithm to generate our codebook because 

of its efficiency. The LBG algorithm is similar to the K-means 

clustering algorithm with a large amount of feedback before 

convergence. Therefore, codebook design and generation can 

be computationally intensive. In this paper, however, we focus 

on implementing the VQ encoders using prepared codebooks. 

The VQ encoding process is as follows:  

1) A set of Nx source vectors {𝑿𝟏, 𝑿𝟐 , … , 𝑿𝑵𝒙
}  is to be 

compressed. 

2) A codebook with Nc codevectors was generated previously: 

𝑪 = {𝑪𝟏, 𝑪𝟐, … , 𝑪𝑵𝒄
}. (1) 

3) The codevector 𝑪𝒊 (𝑖 = 1, 2, … , 𝑁𝑐)  that is the nearest to 

each of the source vector with respect to the corresponding 

errors 𝐸𝑖 (𝑖 = 1, 2, … , 𝑁𝑐) must be found. If function f maps 

the source vector X to its nearest codevector 𝑪𝒊 , we have 

𝑓(𝑿) = 𝑪𝒊  if 𝐸𝑖 ≤ 𝐸𝑖′ , ∀𝑖′ = 1, 2, … , 𝑁𝑐 .       (2) 

The L1-norm error 𝐸𝑖  is defined as  

𝐿1: 𝐸𝑖 = |𝑿 − 𝑪𝒊 | = ∑ |𝑋𝑗  −  𝐶𝑖𝑗  |
𝑁𝑒−1
𝑗=0 , 𝑖 = 1, 2, … , 𝑁𝑐 ,  (3) 

where 𝑁𝑐  is the number of codevectors in the codebook, and 

𝑁𝑒  is the number of elements in a vector (any codevector or 

input vector X). Then we compare and find the minimum error 

distance 𝐸𝑚𝑖𝑛  using (3). If 𝐸𝑖 =  𝐸𝑚𝑖𝑛 , index i is used as the 

compressed encoding of the input vector X. 

4) Compression is obtained by mapping the 𝑁𝑥 source vectors 

to the 𝑁𝑥  corresponding indexes of the closest codevectors. 

5) A decompressed approximation to the 𝑁𝑥  source vectors is 

obtained from the compressed representation by replacing the 

indexes with the corresponding codevectors. 

III.  REQUIRED STOCHASTIC COMPUTING ELEMENTS 

The arithmetic operations required by a VQ design follow 

the error calculations specified in (3) as well as the block 

diagram in Fig. 1. In this section the required stochastic 

computing elements, including adders, absolute subtractors 

and comparators, are described.  

A. Combinational Stochastic Elements 

In stochastic computing, a multiplexer is used as a scaled 

adder (see Fig. 2(a)). Interestingly, an XOR gate can be used 

to compute the absolute value of a subtraction [3], provided 

that there is an appropriate correlation between the two 

parallel input sequences (see Fig. 2(b)). If S1 and S2 are two 

statistically independent sequences containing 𝑁𝑠 bits, then S1 

and S2 are related as follows:  

∑ 𝑆1(𝑖) ∙ 𝑆2(𝑖)𝑁𝑠−1
𝑖=0 =  

1

𝑁𝑠
 ∑ 𝑆1(𝑖)𝑁𝑠−1

𝑖=0  ∙  ∑ 𝑆2(𝑖)𝑁𝑠−1
𝑖=0 .  (4) 

When an XOR gate is used to implement the absolute value of 

a subtraction, correlated sequences are generated by sharing 

the same linear feedback shift register (LFSR) and the same 

initial seed. 

B. Sequential Stochastic Elements 

A stochastic implementation of the tanh function is 

proposed in [6] using the state transition diagram in Fig. 3. 

This is essentially a saturating up-down counter with the sign 

bit as the output. The state machine starts at the central state 

and is always reset to that state before every new tanh 

calculation. 
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Fig. 2. Stochastic arithmetic units: (a) S4 =

1

2
∙ (S1 + S2) (S3 is a unipolar 

sequence encoding a probability of 0.5) and (b) S3 = |S1 − S2| (S1 and S2 
are correlated unipolar sequences). 
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Fig. 3. A state transition diagram of stochastic tanh function [6]. 

The distance calculation and sorting operations are crucial 

in vector quantization. Ideally stochastic comparison 

operations in VQ require the Heaviside step function, which 

can be approximated using the stochastic tanh function and 

then realized using a finite state machine (FSM). When the 

number, Nst, of states is large, the tanh function behaves like a 

Heaviside function. The stochastic comparator can be 

implemented using the tanh function [6]. In Fig. 4, the 

architecture of a stochastic comparator is shown with two 

stochastic inputs PX and PY. The output 𝑃𝑠  of the stochastic 

comparator is a stochastic approximation to 𝑚𝑖𝑛(𝑃𝑋, 𝑃𝑌). If it 
is not the last stage in the comparison tree, 𝑃𝑆  will be passed 

on as a data input to the next comparator stage. 
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Fig. 4. Stochastic comparator based on the stochastic tanh function [6]. 

IV. PROPOSED STOCHASTIC CIRCUIT DESIGN 

A. Overall System Architecture 

The stochastic VQ system can be abstracted as in Fig. 5. As 

an example, consider an image of 300 pixels by 300 pixels for 

performance evaluation and comparison. Each of the four-by-

four square blocks is considered as a vector while the pixel 

values are the elements in the vector. There are thus 300 ×
300/16 =  5625 four-by-four pixel blocks in this image. Fig. 

6 illustrates how the 16-element input vectors are formed. 

Assume we have 256 codevectors in the codebook. Both the 

binary and stochastic implementations of VQ use errors 

calculated based on the L1 norm. In addition to the gates for 

error calculation and comparison, the total hardware cost must 

also include memory cost because the iteratively updated 

errors are stored in indexed arrays. 
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Fig. 5. Data flow in the encoding process of vector quantization. 

 
Fig. 6. An input vector has 16 entries, from 1 to 16 in the left block, 

forming a macro-pixel. In the right block, the array of 8×8 pixels can be 
divided into 4 macro-pixels. 

B. Detailed Design for Stochastic VQ Using L1-norm Errors 

In the L1-norm error calculation, we need to implement (3). 

A suitable architecture is shown in Fig. 7 with 𝑁𝑒 = 16 

elements in a vector. X[i] and H[i] represent the ith elements in 

the input vector and one of the 𝑁𝑐 = 256 codevectors. They 

are encoded by using stochastic number generators [2] from 

their original 8-bit binary values for a grey-scale image. S(Y) 

is the stochastic output, which must be stored prior to being 

converted back to a binary number at the final stage using a 

counter. In this stochastic VQ design, however, this 

conversion is not needed as the final result of the encoding 

process is a binary index that is embedded in the stochastic 

sequences. The XOR gates are used to implement the absolute 

subtractions in stochastic computing with correlated stochastic 

sequences, where the correlated sequences attain the 

maximum overlap of 1’s [3]. The results are then added up by 

the 16-input multiplexer whose selecting signals Sel[0] to 

Sel[3] are four independent stochastic sequences encoding 0.5. 

Note that 256 copies of the L1-norm error calculator in Fig. 7 

are used to compute the 256 errors in parallel. The outputs of 

the L1-norm error calculator are passed on to a parallel 

comparison tree (see Fig. 8) to find the minimum value. 

C. Index storage and delivery 

A source vector is encoded by the index of the codevector 

that produces the minimum error among all the calculated 

ones. The comparison results come naturally as stochastic 

streams that represent probabilities instead of deterministic 

Boolean values. Therefore the stochastic streams have to be 

converted to binary numbers by counters, which would add 

cost. To avoid this problem, we can embed the index in the 

last few bits of the stochastic sequences as a binary-encoded 

value. The error of the kth codevector is labeled with index k. 

The last few bits in this stochastic error sequence are replaced 

with the binary number k. The preceding stochastic bits are 

left unchanged. If the sequences are long enough, giving up 

the last few bits will have little effect on the stochastic value. 

By doing so, only one shift register is required at the last stage 
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Fig. 7. Architecture of the L1-norm error calculator. 
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to extract the index from the stochastic sequence. Hence, 

registers for index storage and counters used as the stochastic-

to-binary converter for every comparator are saved to reduce 

hardware cost. A shorter delay also results as no extra time is 

needed to process the index, which is extracted easily from the 

output bit stream.  

D. Synthesis of Stochastic Logic to Implement VQ 

The stochastic VQ design can be synthesized easily by 

mapping the necessary operations and the corresponding 

stochastic elements. If we are given an input vector and a 

codebook, then a general synthesis method can be used to 

implement the stochastic VQ encoder as follows: 

1) The number of XOR gates and the size of the multiplexer in 

the error calculator shown in Fig. 7 are determined by the 

vector length (i. e. the number of elements in a codevector or 

source vector). 

2) The number of error calculators and the size of the 

stochastic comparison tree shown in Fig. 8 are determined by 

the size of the codebook. A codebook with Nc codevectors 

requires Nc error calculators and a comparison tree with Nc/2 

stochastic comparators as leaf nodes.  

3) The data precision can be adjusted by using different sizes 

of LFSRs when stochastic number generators are implemented. 

V. SIMULATION AND DISCUSSION 

A. Required Sequence Length 

The loss in image quality caused by compression can be 

measured objectively as the total power in the error between 

the original image and the image reconstructed from the 

output of a VQ encoder. Assume that the image contains 

Np=90,000 pixels. Let the pixel values in the original image be 

denoted by 𝑃𝑂𝑖  (𝑖 =  0, 1, … , 𝑁𝑝 − 1), where the pixel values 

of the reconstructed image after compression are denoted by 

𝑃𝐶𝑖  (𝑖 =  0, 1, … , 𝑁𝑝 − 1). The average penalized error (APE) 

of the loss of quality is defined as 

𝐴𝑃𝐸 = √
1

𝑁𝑝
∑ (𝑃𝑂𝑖  – 𝑃𝐶𝑖  )

2𝑁𝑝−1

𝑖=0
.  (5) 

The stochastic VQ circuit was implemented for the L1-norm 

error calculations and various sequence lengths were 

investigated. The corresponding APEs are reported in Table I.  

TABLE I. THE APE VALUES USING L1-NORM ERROR AT DIFFERENT 

SEQUENCE LENGTHS FOR STOCHASTIC VQ AND DIFFERENT BIT 

RESOLUTIONS FOR CONVENTIONAL BINARY VQ. 

Sequence Length (bits) 256 512 1024 2048 4096 9192 

APE 27.4 19.9 10.9 7.3 7.1 7.1 

Resolution (Bits) 4 6 7 8 9 10 

APE 33.1 18.3 11.0 7.8 7.6 6.9 

The APE decreases as the stochastic sequence length grows, 

as expected. Conventional binary implementations of VQ with 

the same experimental parameters are also simulated for 

comparison. It can be seen that 8-bit resolution produces good 

quality and that higher bit resolutions only improve the APE 

more slowly. The stochastic implementation using 2048 bits 

subjectively matches the 8-bit binary conventional 

implementation as the two designs produce similar APEs. 

Implementations with roughly equivalent compression 

performances are considered next in the comparison of circuit 

performance. 

The sequence length implies an output latency that limits 

the performance of a stochastic circuit. Vector quantization, 

however, is already a lossy data compression method. We can 

in some cases accept quality deterioration to reduce the 

latency. In fact, the quality of the compression relies heavily 

on the comparison results of the errors. Hence, the accurate 

ranking of the errors is more important than the error 

accuracies. Finally, in streaming media applications, latency is 

often not an issue as it only affects the initial delay.  

B. Functional Simulation Using Matlab 

The classic Lena image was used as the input source and 

the LBG algorithm was used to generate a codebook. Fig. 9 

shows the stochastic L1-norm VQ simulation results. The input 

is a 300 × 300  pixel grey-scale image. Each pixel is 

represented by an 8-bit binary number. After using stochastic 

vector quantization to compress the original image, the image 

is re-constructed using codebook look-up and displayed for 

visual quality assessment. The image has 5625 input vectors, 

and each vector comprises 16 unsigned 8-bit pixel values. We 

use 2048 bits in a stochastic sequence, so it takes 2048 clock 

cycles to finish one round of calculation. The stochastic 

representation of 2048 bits can be generated by an 11-bit 

LFSR implemented in a Matlab function. To encode the 5625 

input vectors in a fully-parallel architecture, a total of 5625 

independent processor units are required and each unit 

includes 256 error calculators and a 256-input comparison tree.  

 
Fig. 9. The progressive improvement of image quality using L1-norm 
stochastic VQ after 256, 512, 1024 and 2048 clock cycles. 

The output images in Fig. 9 illustrate the progressive 

quality feature of stochastic computing. The reconstructed 

image after stochastic compression for the 256th, 512th, 1024th 

and 2048th clock cycles are shown for the L1-norm error 

measure. The reconstructed output images are vague and only 

show a rough outline of the original image after compression 

using 256 clock cycles. However the reconstructed image 

becomes a clearer reproduction as the stochastic encoding 

time increases. Because 11-bit LFSRs are used to generate the 

stochastic sequences, the sequences repeat every 2048 cycles. 

The image quality stops improving after 2048 clock cycles. 

C. Circuit Performance 

The hardware area, power consumption and delay are 

investigated for an L1-norm implementation using both the 

stochastic and conventional binary approaches. The auxiliary 

circuits such as stochastic number generators (implemented by 

LFSRs) and counters are all included. By using the Synopsys 

design compiler [8], we obtained the fastest clock and the 

corresponding power and silicon area. 

Following the results in Table I, we compared (1) an 8-bit 

binary implementation with the stochastic implementation 

using 2048-bit sequences, (2) a 7-bit binary implementation 

with the stochastic implementation using 1024-bit sequences 



 

 

5 

and (3) a lower quality processing implementation using the 6-

bit binary and the 512-bit stochastic designs. The synthesis 

reports are shown in Table II. The stochastic circuits have 

significantly lower hardware cost. Stochastic implementations 

only cost roughly 1% of the hardware of binary 

implementations. This also leads to savings in power 

consumption. Moreover, we can compress two input images 

using the 2048-bit stochastic VQ implementation and achieve 

the same compression quality as the 1024-bit stochastic VQ 

implementation. Thus only the 2048-bit stochastic VQ 

implementation is needed instead of two copies of the 1024-bit 

stochastic VQ circuits, further saving 32.3% of the area. 

TABLE II. CIRCUIT PERFORMANCE OF L1-NORM VECTOR QUANTIZATION: 

(1) 8-BIT BINARY (B) VS. 2048-BIT STOCHASTIC (S), (2) 7-BIT BINARY (B) 

VS. 1024-BIT STOCHASTIC (S) AND (3) 6-BIT BINARY (B) VS. 512-BIT 

STOCHASTIC (S). 

 

Area (𝜇𝑚2) 
Power (mW) @  Min 

Clock Period 

Minimum Clock 

Period (ns) 

B S 
Ratio: 

S/B 
B S 

Ratio: 

S/B 
B S 

Ratio: 

S/B 

(1) 93294 1358 0.015 107.56 3.22 0.03 2.26 0.20 0.09 

(2) 86231 1003 0.012 81.30 2.86 0.04 2.26 0.20 0.09 

(3) 79177 641 0.008 50.09 2.47 0.05 2.26 0.21 0.09 

 

Energy per Operation 

(pJ/Operation) 

Throughput per Area 

(1/(𝜇𝑚2 ∙ 𝑠)) 
Sequence Length (bits) 

B S 
Ratio: 

S/B 
B S 

Ratio: 

S/B 
B S 

Ratio: 

S/B 

(1) 243 1320 5.43 4743 1797 0.38 N/A 2048 N/A 

(2) 184 586 3.19 5131 4869 0.95 N/A 1024 N/A 

(3) 113 266 2.35 5588 14519 2.60 N/A 512 N/A 

The time required for an encoding operation is determined 

by the product of the clock period and the stochastic sequence 

length. Because the structure of stochastic circuits is simpler, a 

shorter critical path delay is expected. In Table II the 

minimum stochastic clock periods are roughly 10% of the 

minimum binary clock periods.  

The throughput per area (TPA) and the energy per operation 

(EPO) are two important generic metrics. In Table II, the 

stochastic approach shows significant advantages over the 

binary approach in terms of the area cost, power consumption 

and delay, as expected. When long sequences such as 2048 

bits are considered, the ratio of the EPOs between stochastic 

and binary circuits is about 5.43, and the ratio of the TPAs is 

approximately 0.38. Therefore, the stochastic circuit using 

2048-bit sequences consumes more energy and underperforms 

the conventional binary circuit using an 8-bit resolution. 

However, if some loss in quality is acceptable in the 

application, the stochastic implementation using 512-bit 

sequences shows only 2.35 times of the EPO and 2.60 times of 

the TPA with only 0.8% the total area compared to a 6-bit 

binary implementation. It can be seen that the stochastic 

implementation using 1024-bit sequences shows similar 

performance compared to the 7-bit binary implementation 

with respect to TPA. The stochastic VQ is thus not 

competitive for 7-bit or higher bit resolutions in terms of the 

TPA. 

VI. CONCLUSIONS 

Stochastic circuits were proposed to implement L1-norm 

vector quantization (VQ). Implementations with similar 

compression qualities were compared with respect to average 

penalized error (APE) for a grey-scale image. Due to the 

compact stochastic arithmetic elements and an efficient index 

storage approach, the area for a stochastic implementation is 

less than 1.5% of the fully parallel binary design. Our results 

show that the 2048-bit stochastic VQ circuit underperforms 

the 8-bit binary circuit in terms of throughput per area (TPA) 

and energy per operation (EPO). However, the stochastic 

circuit can be more efficient for a lower-quality compression 

algorithm by using the 512-bit stochastic circuit.  In the binary 

implementation, 256 codevectors are used to encode an image 

with 90000 pixels, so the 6-bit VQ provides an image quality 

of 256 × 16 × 6 bits / 90000 pixels = 0.273 bit per pixel. 

Because the 512-bit stochastic implementation shows similar 

compression quality to the 6-bit binary implementation, it can 

be potentially used where videos are streamed with low-speed 

connections and possibly low-quality images [9]. The TPA of 

the 512-bit stochastic circuit is roughly 2.60 times as large as 

that of the 6-bit binary circuit. We found that the 7-bit binary 

implementation and 1024-bit stochastic implementation show 

roughly the same performance in terms of TPA. Thus, 

stochastic VQ is only competitive for bit resolutions lower 

than 7 bits. 

Applications could benefit from a stochastic 

implementation of VQ if the extra energy per operation and 

the higher latency are not important issues. The stochastic 

design is so small that many multimedia streams can be 

encoded simultaneously in the same area as one conventional 

binary design. The inherent progressive quality of the 

stochastic VQ design is potentially useful. To obtain greater 

accuracy, one simply waits more clock cycles. The number of 

clock cycles can be reduced to save energy at the cost of less 

accuracy. Hence, a stochastic VQ implementation for high-

quality compression can be easily applied to obtain lower 

compression quality by encoding multiple input images. 

Compared to lower-quality stochastic circuit implementations, 

the area can further be significantly reduced. 
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