
Stochastic Circuit Design and Performance

Evaluation of Vector Quantization

Ran Wang, Jie Han, Bruce Cockburn, and Duncan Elliott

Department of Electrical and Computer Engineering

University of Alberta

Edmonton, AB T6G 2V4, Canada

{ran5, jhan8, cockburn, duncan.elliott}@ualberta.ca

Abstract—Vector quantization (VQ) is a general data

compression technique that has a scalable implementation

complexity and potentially a high compression ratio. In this

paper, a novel implementation of VQ using stochastic circuits is

proposed and its performance is evaluated. The stochastic and

binary designs are compared for the same compression quality

and the circuits are synthesized for an industrial 28-nm cell

library. The effects of varying the sequence length of the

stochastic design are studied with respect to the performance

metric of throughput per area (TPA). When a shortened 512-bit

encoding sequence is used to obtain a lower quality compression,

the TPA is about 2.60 times that of the binary implementation

with the same quality as that of the stochastic implementation

measured by the L1 norm error (i.e., the first-order error). Thus,

the stochastic implementation outperforms the conventional

binary design in terms of TPA for a relatively low compression

quality. By exploiting the progressive precision feature of a

stochastic circuit, a readily scalable processing quality can be

attained by simply halting the computation after different

numbers of clock cycles.

Keywords—stochastic computing; vector quantization;

sequence length; cost efficiency

I. INTRODUCTION

In some application areas, stochastic computation has been

shown to have advantages with respect to important measures

of circuit performance [1, 2]. These advantages include

potentially simpler arithmetic hardware and inherent tolerance

of transient signal errors. Because accuracy is closely related

to the stochastic sequence length, applications for which some

accuracy can be safely sacrificed, such as multimedia

information displayed to humans, should be considered for

implementation in stochastic circuits. Some image processing

algorithms using stochastic methods have already been shown

to match their binary counterparts in terms of hardware cost

and speed while providing a similar experience to humans [3].

The use of combinational logic as stochastic elements can

be traced back to the work of Gaines [1]. Several common

arithmetic blocks, such as adders, multipliers, dividers and

integrators, were proposed for both bipolar and unipolar

stochastic representations. An arithmetic synthesis method

based on Bernstein polynomials was investigated in [4].

Bernstein polynomials were found to be efficiently built with

stochastic logic. An arbitrary polynomial can be expressed

using Bernstein polynomials after proper scaling operations,

thus any polynomial can be implemented stochastically. In [5],

sequential stochastic computational elements were built using

finite state machines (FSMs). Various arithmetic functions

were built using state transition diagrams such as stochastic

exponentiation, a stochastic tanh function, and a stochastic

linear gain function [6]. These stochastic implementations

were shown to be efficient compared with previous stochastic

computing elements implemented with combinational logic.

Vector quantization based compression algorithms are

useful in that the amount of stored and transmitted data can be

reduced with a readily adjusted trade-off between compression

ratio and implementation size. These features are important in

multimedia processing and communications, such as for voice

and image compression. VQ is a lossy data compression

method, and the loss in the original information must be kept

as low as possible. In VQ, the information loss can be reduced

by simply using a larger suitably-designed codebook. The

resulting extra search time can be minimized by using parallel

computational elements [7].

 In this paper, we explore the feasibility of using stochastic

circuits to implement VQ. Typically, a longer sequence offers

greater representational accuracy, but with a longer

computation time. In a stochastic design, therefore, shorter

sequences are used to provide faster computation but with less

accurate results. Both the stochastic and binary designs are

synthesized to measure important performance characteristics.

II. VECTOR QUANTIZATION

A. Background

Vector quantization (VQ) is a lossy digital compression

technique. First the source data is partitioned into equal-length

vectors [7]. Each vector is then replaced with the index of the

closest matching codevector that is contained in a given

codebook. This encoding process is shown in Fig. 1(a). Note

that each input vector is more compactly represented using the

index of the closest codevector. The indexes are then replaced

with the corresponding codevectors during decompression, as

shown in the decoding process in Fig. 1(b).

Error

calculations

Signal

input

Error

sorting and

comparison

Index

selection

Codebook

Training and

codebook

generation

Index look

up

Use the

retrieved

codevectorsCodebook

Communi-

cation channel

 (a) (b)

Fig. 1. The block diagram for the (a) encoding and (b) decoding in VQ.

2

B. Codebook Generation and the Encoding Process

In 1980’s, Linde, Buzo, and Gray (LBG) proposed a VQ

codebook generation algorithm [7]. Although other efficient

codebook generation approaches have been developed, we

selected the LBG algorithm to generate our codebook because

of its efficiency. The LBG algorithm is similar to the K-means

clustering algorithm with a large amount of feedback before

convergence. Therefore, codebook design and generation can

be computationally intensive. In this paper, however, we focus

on implementing the VQ encoders using prepared codebooks.

The VQ encoding process is as follows:

1) A set of Nx source vectors {𝑿𝟏, 𝑿𝟐 , … , 𝑿𝑵𝒙
} is to be

compressed.

2) A codebook with Nc codevectors was generated previously:

𝑪 = {𝑪𝟏, 𝑪𝟐, … , 𝑪𝑵𝒄
}. (1)

3) The codevector 𝑪𝒊 (𝑖 = 1, 2, … , 𝑁𝑐) that is the nearest to

each of the source vector with respect to the corresponding

errors 𝐸𝑖 (𝑖 = 1, 2, … , 𝑁𝑐) must be found. If function f maps

the source vector X to its nearest codevector 𝑪𝒊 , we have

𝑓(𝑿) = 𝑪𝒊 if 𝐸𝑖 ≤ 𝐸𝑖′ , ∀𝑖′ = 1, 2, … , 𝑁𝑐 . (2)

The L1-norm error 𝐸𝑖 is defined as

𝐿1: 𝐸𝑖 = |𝑿 − 𝑪𝒊 | = ∑ |𝑋𝑗 − 𝐶𝑖𝑗 |
𝑁𝑒−1
𝑗=0 , 𝑖 = 1, 2, … , 𝑁𝑐 , (3)

where 𝑁𝑐 is the number of codevectors in the codebook, and

𝑁𝑒 is the number of elements in a vector (any codevector or

input vector X). Then we compare and find the minimum error

distance 𝐸𝑚𝑖𝑛 using (3). If 𝐸𝑖 = 𝐸𝑚𝑖𝑛 , index i is used as the

compressed encoding of the input vector X.

4) Compression is obtained by mapping the 𝑁𝑥 source vectors

to the 𝑁𝑥 corresponding indexes of the closest codevectors.

5) A decompressed approximation to the 𝑁𝑥 source vectors is

obtained from the compressed representation by replacing the

indexes with the corresponding codevectors.

III. REQUIRED STOCHASTIC COMPUTING ELEMENTS

The arithmetic operations required by a VQ design follow

the error calculations specified in (3) as well as the block

diagram in Fig. 1. In this section the required stochastic

computing elements, including adders, absolute subtractors

and comparators, are described.

A. Combinational Stochastic Elements

In stochastic computing, a multiplexer is used as a scaled

adder (see Fig. 2(a)). Interestingly, an XOR gate can be used

to compute the absolute value of a subtraction [3], provided

that there is an appropriate correlation between the two

parallel input sequences (see Fig. 2(b)). If S1 and S2 are two

statistically independent sequences containing 𝑁𝑠 bits, then S1

and S2 are related as follows:

∑ 𝑆1(𝑖) ∙ 𝑆2(𝑖)𝑁𝑠−1
𝑖=0 =

1

𝑁𝑠
 ∑ 𝑆1(𝑖)𝑁𝑠−1

𝑖=0 ∙ ∑ 𝑆2(𝑖)𝑁𝑠−1
𝑖=0 . (4)

When an XOR gate is used to implement the absolute value of

a subtraction, correlated sequences are generated by sharing

the same linear feedback shift register (LFSR) and the same

initial seed.

B. Sequential Stochastic Elements

A stochastic implementation of the tanh function is

proposed in [6] using the state transition diagram in Fig. 3.

This is essentially a saturating up-down counter with the sign

bit as the output. The state machine starts at the central state

and is always reset to that state before every new tanh

calculation.

XOR
S1

S2
S3(a) MUX

S3

S2

S1
S4 (b)

Fig. 2. Stochastic arithmetic units: (a) S4 =

1

2
∙ (S1 + S2) (S3 is a unipolar

sequence encoding a probability of 0.5) and (b) S3 = |S1 − S2| (S1 and S2
are correlated unipolar sequences).

1S
1

2

stNS

2

stNS
2stNS 1stNS 0S

X =1 X =1 X =1

X =0 X =0 X =0

X =1

X =0

Reset

1
2

stNS

Output Y = 1Output Y = 1Output Y = 0Output Y = 0

Fig. 3. A state transition diagram of stochastic tanh function [6].

The distance calculation and sorting operations are crucial

in vector quantization. Ideally stochastic comparison

operations in VQ require the Heaviside step function, which

can be approximated using the stochastic tanh function and

then realized using a finite state machine (FSM). When the

number, Nst, of states is large, the tanh function behaves like a

Heaviside function. The stochastic comparator can be

implemented using the tanh function [6]. In Fig. 4, the

architecture of a stochastic comparator is shown with two

stochastic inputs PX and PY. The output 𝑃𝑠 of the stochastic

comparator is a stochastic approximation to 𝑚𝑖𝑛(𝑃𝑋, 𝑃𝑌). If it
is not the last stage in the comparison tree, 𝑃𝑆 will be passed

on as a data input to the next comparator stage.

MUX 1

0.5

PX

PY

PS1
tanh

MUX 2
PS≈ min(PX, Py)

PS2

0

1

0

1

Fig. 4. Stochastic comparator based on the stochastic tanh function [6].

IV. PROPOSED STOCHASTIC CIRCUIT DESIGN

A. Overall System Architecture

The stochastic VQ system can be abstracted as in Fig. 5. As

an example, consider an image of 300 pixels by 300 pixels for

performance evaluation and comparison. Each of the four-by-

four square blocks is considered as a vector while the pixel

values are the elements in the vector. There are thus 300 ×
300/16 = 5625 four-by-four pixel blocks in this image. Fig.

6 illustrates how the 16-element input vectors are formed.

Assume we have 256 codevectors in the codebook. Both the

binary and stochastic implementations of VQ use errors

calculated based on the L1 norm. In addition to the gates for

error calculation and comparison, the total hardware cost must

also include memory cost because the iteratively updated

errors are stored in indexed arrays.

3

Input vectors

in stochastic

streams

Input vectors

in stochastic

streams

Calculated

errors to be

compared

Calculated

errors to be

compared

Stochastic

streams for the

codevectors in

the codebook

Stochastic

streams for the

codevectors in

the codebook

Stochastic

error

calculator

Stochastic

error

calculator

Stochastic

comparator

Stochastic

comparator

Index for each

codevector in

the codebook

Index for each

codevector in

the codebook

Index for the

minimum

error

Index for the

minimum

error

Encoded

vectors

Encoded

vectors

Flow of code indexes

Flow of data vectors and codevectors

Fig. 5. Data flow in the encoding process of vector quantization.

Fig. 6. An input vector has 16 entries, from 1 to 16 in the left block,

forming a macro-pixel. In the right block, the array of 8×8 pixels can be
divided into 4 macro-pixels.

B. Detailed Design for Stochastic VQ Using L1-norm Errors

In the L1-norm error calculation, we need to implement (3).

A suitable architecture is shown in Fig. 7 with 𝑁𝑒 = 16

elements in a vector. X[i] and H[i] represent the ith elements in

the input vector and one of the 𝑁𝑐 = 256 codevectors. They

are encoded by using stochastic number generators [2] from

their original 8-bit binary values for a grey-scale image. S(Y)

is the stochastic output, which must be stored prior to being

converted back to a binary number at the final stage using a

counter. In this stochastic VQ design, however, this

conversion is not needed as the final result of the encoding

process is a binary index that is embedded in the stochastic

sequences. The XOR gates are used to implement the absolute

subtractions in stochastic computing with correlated stochastic

sequences, where the correlated sequences attain the

maximum overlap of 1’s [3]. The results are then added up by

the 16-input multiplexer whose selecting signals Sel[0] to

Sel[3] are four independent stochastic sequences encoding 0.5.

Note that 256 copies of the L1-norm error calculator in Fig. 7

are used to compute the 256 errors in parallel. The outputs of

the L1-norm error calculator are passed on to a parallel

comparison tree (see Fig. 8) to find the minimum value.

C. Index storage and delivery

A source vector is encoded by the index of the codevector

that produces the minimum error among all the calculated

ones. The comparison results come naturally as stochastic

streams that represent probabilities instead of deterministic

Boolean values. Therefore the stochastic streams have to be

converted to binary numbers by counters, which would add

cost. To avoid this problem, we can embed the index in the

last few bits of the stochastic sequences as a binary-encoded

value. The error of the kth codevector is labeled with index k.

The last few bits in this stochastic error sequence are replaced

with the binary number k. The preceding stochastic bits are

left unchanged. If the sequences are long enough, giving up

the last few bits will have little effect on the stochastic value.

By doing so, only one shift register is required at the last stage

16-input
 MUX

S(X[0])

Sel[0]

XOR

S(H[0])
0

1

15

S(Y)

X[0]

H[0]

S(X[1])
XOR

S(H[1])

X[1]

H[1]

S(X[15])
XOR

S(H[15])

X[15]

H[15]

0.5
Sel[1]

Sel[2]
Sel[3]

0.5
0.5
0.5

S(X[2])
XOR

S(H[2])
2

X[2]

H[2]

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu
Fig. 7. Architecture of the L1-norm error calculator.

Stochastic
Sequence for Error i

Stochastic
Sequence for Error j

Stochastic
Error

Calculator

Stochastic
Error

Calculator

Error i

≤Error j ?
i:j

Error i

≤Error j ?
i:j

Stochastic Sequence
for one Input Vector

Stochastic
Codevector k

Stochastic
Sequence for

Error k

Stochastic Output for
min{Error i, Error j}

Stochastic
Comparator

(a)

Input Vector
Codevector1

Input Vector

Codevector2

Input Vector

Codevector3

Input Vector

Codevector4

Input Vector
Codevector5

Input Vector
Codevector6

Input Vector
Codevector7

Input Vector
Codevector8

Input Vector
Codevector9

Input Vector

Codevector10

Input Vector

Codevector11

Input Vector

Codevector12

Input Vector
Codevector13

Input Vector
Codevector14

Input Vector
Codevector15

Input Vector
Codevector16

(b)

Fig. 8. (a) Stochastic elements. (b) Stochastic comparison tree: a square

represents an error calculator, a circle represents a comparison result and a

triangle represents a stochastic comparator. Note that the codevector with the
smallest error is chosen and forwarded as the comparison result.

4

to extract the index from the stochastic sequence. Hence,

registers for index storage and counters used as the stochastic-

to-binary converter for every comparator are saved to reduce

hardware cost. A shorter delay also results as no extra time is

needed to process the index, which is extracted easily from the

output bit stream.

D. Synthesis of Stochastic Logic to Implement VQ

The stochastic VQ design can be synthesized easily by

mapping the necessary operations and the corresponding

stochastic elements. If we are given an input vector and a

codebook, then a general synthesis method can be used to

implement the stochastic VQ encoder as follows:

1) The number of XOR gates and the size of the multiplexer in

the error calculator shown in Fig. 7 are determined by the

vector length (i. e. the number of elements in a codevector or

source vector).

2) The number of error calculators and the size of the

stochastic comparison tree shown in Fig. 8 are determined by

the size of the codebook. A codebook with Nc codevectors

requires Nc error calculators and a comparison tree with Nc/2

stochastic comparators as leaf nodes.

3) The data precision can be adjusted by using different sizes

of LFSRs when stochastic number generators are implemented.

V. SIMULATION AND DISCUSSION

A. Required Sequence Length

The loss in image quality caused by compression can be

measured objectively as the total power in the error between

the original image and the image reconstructed from the

output of a VQ encoder. Assume that the image contains

Np=90,000 pixels. Let the pixel values in the original image be

denoted by 𝑃𝑂𝑖 (𝑖 = 0, 1, … , 𝑁𝑝 − 1), where the pixel values

of the reconstructed image after compression are denoted by

𝑃𝐶𝑖 (𝑖 = 0, 1, … , 𝑁𝑝 − 1). The average penalized error (APE)

of the loss of quality is defined as

𝐴𝑃𝐸 = √
1

𝑁𝑝
∑ (𝑃𝑂𝑖 – 𝑃𝐶𝑖)

2𝑁𝑝−1

𝑖=0
. (5)

The stochastic VQ circuit was implemented for the L1-norm

error calculations and various sequence lengths were

investigated. The corresponding APEs are reported in Table I.

TABLE I. THE APE VALUES USING L1-NORM ERROR AT DIFFERENT

SEQUENCE LENGTHS FOR STOCHASTIC VQ AND DIFFERENT BIT

RESOLUTIONS FOR CONVENTIONAL BINARY VQ.

Sequence Length (bits) 256 512 1024 2048 4096 9192

APE 27.4 19.9 10.9 7.3 7.1 7.1

Resolution (Bits) 4 6 7 8 9 10

APE 33.1 18.3 11.0 7.8 7.6 6.9

The APE decreases as the stochastic sequence length grows,

as expected. Conventional binary implementations of VQ with

the same experimental parameters are also simulated for

comparison. It can be seen that 8-bit resolution produces good

quality and that higher bit resolutions only improve the APE

more slowly. The stochastic implementation using 2048 bits

subjectively matches the 8-bit binary conventional

implementation as the two designs produce similar APEs.

Implementations with roughly equivalent compression

performances are considered next in the comparison of circuit

performance.

The sequence length implies an output latency that limits

the performance of a stochastic circuit. Vector quantization,

however, is already a lossy data compression method. We can

in some cases accept quality deterioration to reduce the

latency. In fact, the quality of the compression relies heavily

on the comparison results of the errors. Hence, the accurate

ranking of the errors is more important than the error

accuracies. Finally, in streaming media applications, latency is

often not an issue as it only affects the initial delay.

B. Functional Simulation Using Matlab

The classic Lena image was used as the input source and

the LBG algorithm was used to generate a codebook. Fig. 9

shows the stochastic L1-norm VQ simulation results. The input

is a 300 × 300 pixel grey-scale image. Each pixel is

represented by an 8-bit binary number. After using stochastic

vector quantization to compress the original image, the image

is re-constructed using codebook look-up and displayed for

visual quality assessment. The image has 5625 input vectors,

and each vector comprises 16 unsigned 8-bit pixel values. We

use 2048 bits in a stochastic sequence, so it takes 2048 clock

cycles to finish one round of calculation. The stochastic

representation of 2048 bits can be generated by an 11-bit

LFSR implemented in a Matlab function. To encode the 5625

input vectors in a fully-parallel architecture, a total of 5625

independent processor units are required and each unit

includes 256 error calculators and a 256-input comparison tree.

Fig. 9. The progressive improvement of image quality using L1-norm
stochastic VQ after 256, 512, 1024 and 2048 clock cycles.

The output images in Fig. 9 illustrate the progressive

quality feature of stochastic computing. The reconstructed

image after stochastic compression for the 256th, 512th, 1024th

and 2048th clock cycles are shown for the L1-norm error

measure. The reconstructed output images are vague and only

show a rough outline of the original image after compression

using 256 clock cycles. However the reconstructed image

becomes a clearer reproduction as the stochastic encoding

time increases. Because 11-bit LFSRs are used to generate the

stochastic sequences, the sequences repeat every 2048 cycles.

The image quality stops improving after 2048 clock cycles.

C. Circuit Performance

The hardware area, power consumption and delay are

investigated for an L1-norm implementation using both the

stochastic and conventional binary approaches. The auxiliary

circuits such as stochastic number generators (implemented by

LFSRs) and counters are all included. By using the Synopsys

design compiler [8], we obtained the fastest clock and the

corresponding power and silicon area.

Following the results in Table I, we compared (1) an 8-bit

binary implementation with the stochastic implementation

using 2048-bit sequences, (2) a 7-bit binary implementation

with the stochastic implementation using 1024-bit sequences

5

and (3) a lower quality processing implementation using the 6-

bit binary and the 512-bit stochastic designs. The synthesis

reports are shown in Table II. The stochastic circuits have

significantly lower hardware cost. Stochastic implementations

only cost roughly 1% of the hardware of binary

implementations. This also leads to savings in power

consumption. Moreover, we can compress two input images

using the 2048-bit stochastic VQ implementation and achieve

the same compression quality as the 1024-bit stochastic VQ

implementation. Thus only the 2048-bit stochastic VQ

implementation is needed instead of two copies of the 1024-bit

stochastic VQ circuits, further saving 32.3% of the area.

TABLE II. CIRCUIT PERFORMANCE OF L1-NORM VECTOR QUANTIZATION:

(1) 8-BIT BINARY (B) VS. 2048-BIT STOCHASTIC (S), (2) 7-BIT BINARY (B)

VS. 1024-BIT STOCHASTIC (S) AND (3) 6-BIT BINARY (B) VS. 512-BIT

STOCHASTIC (S).

Area (𝜇𝑚2)
Power (mW) @ Min

Clock Period

Minimum Clock

Period (ns)

B S
Ratio:

S/B
B S

Ratio:

S/B
B S

Ratio:

S/B

(1) 93294 1358 0.015 107.56 3.22 0.03 2.26 0.20 0.09

(2) 86231 1003 0.012 81.30 2.86 0.04 2.26 0.20 0.09

(3) 79177 641 0.008 50.09 2.47 0.05 2.26 0.21 0.09

Energy per Operation

(pJ/Operation)

Throughput per Area

(1/(𝜇𝑚2 ∙ 𝑠))
Sequence Length (bits)

B S
Ratio:

S/B
B S

Ratio:

S/B
B S

Ratio:

S/B

(1) 243 1320 5.43 4743 1797 0.38 N/A 2048 N/A

(2) 184 586 3.19 5131 4869 0.95 N/A 1024 N/A

(3) 113 266 2.35 5588 14519 2.60 N/A 512 N/A

The time required for an encoding operation is determined

by the product of the clock period and the stochastic sequence

length. Because the structure of stochastic circuits is simpler, a

shorter critical path delay is expected. In Table II the

minimum stochastic clock periods are roughly 10% of the

minimum binary clock periods.

The throughput per area (TPA) and the energy per operation

(EPO) are two important generic metrics. In Table II, the

stochastic approach shows significant advantages over the

binary approach in terms of the area cost, power consumption

and delay, as expected. When long sequences such as 2048

bits are considered, the ratio of the EPOs between stochastic

and binary circuits is about 5.43, and the ratio of the TPAs is

approximately 0.38. Therefore, the stochastic circuit using

2048-bit sequences consumes more energy and underperforms

the conventional binary circuit using an 8-bit resolution.

However, if some loss in quality is acceptable in the

application, the stochastic implementation using 512-bit

sequences shows only 2.35 times of the EPO and 2.60 times of

the TPA with only 0.8% the total area compared to a 6-bit

binary implementation. It can be seen that the stochastic

implementation using 1024-bit sequences shows similar

performance compared to the 7-bit binary implementation

with respect to TPA. The stochastic VQ is thus not

competitive for 7-bit or higher bit resolutions in terms of the

TPA.

VI. CONCLUSIONS

Stochastic circuits were proposed to implement L1-norm

vector quantization (VQ). Implementations with similar

compression qualities were compared with respect to average

penalized error (APE) for a grey-scale image. Due to the

compact stochastic arithmetic elements and an efficient index

storage approach, the area for a stochastic implementation is

less than 1.5% of the fully parallel binary design. Our results

show that the 2048-bit stochastic VQ circuit underperforms

the 8-bit binary circuit in terms of throughput per area (TPA)

and energy per operation (EPO). However, the stochastic

circuit can be more efficient for a lower-quality compression

algorithm by using the 512-bit stochastic circuit. In the binary

implementation, 256 codevectors are used to encode an image

with 90000 pixels, so the 6-bit VQ provides an image quality

of 256 × 16 × 6 bits / 90000 pixels = 0.273 bit per pixel.

Because the 512-bit stochastic implementation shows similar

compression quality to the 6-bit binary implementation, it can

be potentially used where videos are streamed with low-speed

connections and possibly low-quality images [9]. The TPA of

the 512-bit stochastic circuit is roughly 2.60 times as large as

that of the 6-bit binary circuit. We found that the 7-bit binary

implementation and 1024-bit stochastic implementation show

roughly the same performance in terms of TPA. Thus,

stochastic VQ is only competitive for bit resolutions lower

than 7 bits.

Applications could benefit from a stochastic

implementation of VQ if the extra energy per operation and

the higher latency are not important issues. The stochastic

design is so small that many multimedia streams can be

encoded simultaneously in the same area as one conventional

binary design. The inherent progressive quality of the

stochastic VQ design is potentially useful. To obtain greater

accuracy, one simply waits more clock cycles. The number of

clock cycles can be reduced to save energy at the cost of less

accuracy. Hence, a stochastic VQ implementation for high-

quality compression can be easily applied to obtain lower

compression quality by encoding multiple input images.

Compared to lower-quality stochastic circuit implementations,

the area can further be significantly reduced.

REFERENCES

[1] B. R. Gaines, "Stochastic computing systems." In Advances in

information systems science, pp. 37-172. Springer US, 1969.
[2] A. Alaghi and J. P. Hayes, “Survey of stochastic computing," ACM

Trans. on Embedded Computing Systems, vol. 12, no. 2s, p. 92, 2013.

[3] A. Alaghi and J. P. Hayes, “Stochastic circuits for real-time image-
processing applications,” Proc. DAC, pp. 136:1-6, June 2013.

[4] W. Qian and M. D. Riedel. "The synthesis of robust polynomial

arithmetic with stochastic logic." In Design Automation Conf., pp. 648-
653. IEEE, 2008.

[5] P. Li and D. J. Lilja, "Using stochastic computing to implement digital

image processing algorithms." Proc. 29th Int. Conf. on Computer
Design, IEEE, 2011.

[6] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel,

“Computation on stochastic bit streams digital image processing case
studies," IEEE Trans. on Very Large Scale Integration (VLSI) Systems,

vol. 22, no. 3, pp. 449-462, 2014.

[7] Y. Linde, A. Buzo and R. M. Gray, "An algorithm for vector quantizer
design." IEEE Trans. on Communications, 28.1 (1980): 84-95.

[8] D. W. Knapp, Behavioral synthesis: Digital system design using the

Synopsys behavioral compiler, Prentice-Hall, Inc., 1996.
[9] J. Ozer. (2014, January/February). How to Produce High-Quality H.264

Video Files [Online]. Available:

http://www.streamingmedia.com/Articles/Editorial/Featured-
Articles/How-to-Produce-High-Quality-H.264-Video-Files-94216.aspx

[10] J. Han, H. Chen, J. Liang, P. Zhu, Z. Yang, F. Lombardi, "A stochastic

computational approach for accurate and efficient reliability evaluation."
IEEE Trans. on Computers, vol. 63, no. 6, pp. 1336 – 1350, June 2014.

http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/How-to-Produce-High-Quality-H.264-Video-Files-94216.aspx
http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/How-to-Produce-High-Quality-H.264-Video-Files-94216.aspx

